96 research outputs found

    SOLPRO: A computer code to calculate probabilistic energetic solar proton fluences

    Get PDF
    A code was developed for the calculation of interplanetary solar proton fluences at 1 AU for the active years 1977 to 1983. The fluences are presented as functions of mission duration tau, energy threshold E, and confidence level Q. For a given combination of tau and Q, the routine determines whether ordinary or anomalously large events are to be considered, and in the latter case, the number of anomalously large events that are predicted by probabilistic theory for the specified mission duration. The code is described in detail. A listing and sample calculations are included

    Radiation environment for ATS-F

    Get PDF
    The ambient trapped particle fluxes incident on the ATS-F satellite were determined. Several synchronous circular flight paths were evaluated and the effect of parking longitude on vehicle encountered intensities was investigated. Temporal variations in the electron environment were considered and partially accounted for. Magnetic field calculations were performed with a current field model extrapolated to a later epoch with linear time terms. Orbital flux integrations were performed with the latest proton and electron environment models using new improved computational methods. The results are presented in graphical and tabular form; they are analyzed, explained, and discussed. Estimates of energetic solar proton fluxes are given for a one year mission at selected integral energies ranging from 10 to 100 Mev, calculated for a year of maximum solar activity during the next solar cycle

    Projects SOLRAD and TIMATION: Space radiation exposure

    Get PDF
    The charged particle fluxes to be encountered by spacecraft in circular orbits with inclinations of 125 and 65 degrees, and altitudes of 13890 and 11111 kilometers, respectively were investigated. For these conditions, two nominal trajectories were generated corresponding to missions SOLRAD and TIMATION. The orbits and geomagnetic geometry, spectral profiles, peaks per orbit, trajectory data, and energetic solar proton fluxes are discussed. The tabulated results are analyzed

    World maps of predicted electron intensities for the ITOS-A/NOAA-1 spacecraft

    Get PDF
    Maps of electron fluxes 10,000, 1 million, and 10 million particles/sq cm/sec are presented for an ITOS-A/NOAA-1 circular orbit, inclination of 79 deg, and altitude of 1463 km. The uncertainty in the flux values is about a factor of 3, and the error in contour plotting may be plus or minus 2 deg in latitude and plus or minus 3 deg in longitude. The fractional lifetime spent within the different intensity regions is graphed

    Shortcomings in ground testing, environment simulations, and performance predictions for space applications

    Get PDF
    This paper addresses the issues involved in radiation testing of devices and subsystems to obtain the data that are required to predict the performance and survivability of satellite systems for extended missions in space. The problems associated with space environmental simulations, or the lack thereof, in experiments intended to produce information to describe the degradation and behavior of parts and systems are discussed. Several types of radiation effects in semiconductor components are presented, as for example: ionization dose effects, heavy ion and proton induced Single Event Upsets (SEUs), and Single Event Transient Upsets (SETUs). Examples and illustrations of data relating to these ground testing issues are provided. The primary objective of this presentation is to alert the reader to the shortcomings, pitfalls, variabilities, and uncertainties in acquiring information to logically design electronic subsystems for use in satellites or space stations with long mission lifetimes, and to point out the weaknesses and deficiencies in the methods and procedures by which that information is obtained

    Worst-case space radiation environments for geocentric missions

    Get PDF
    Worst-case possible annual radiation fluences of energetic charged particles in the terrestrial space environment, and the resultant depth-dose distributions in aluminum, were calculated in order to establish absolute upper limits to the radiation exposure of spacecraft in geocentric orbits. The results are a concise set of data intended to aid in the determination of the feasibility of a particular mission. The data may further serve as guidelines in the evaluation of standard spacecraft components. Calculations were performed for each significant particle species populating or visiting the magnetosphere, on the basis of volume occupied by or accessible to the respective species. Thus, magnetospheric space was divided into five distinct regions using the magnetic shell parameter L, which gives the approximate geocentric distance (in earth radii) of a field line's equatorial intersect

    Energetic solar proton versus terrestrially trapped proton fluxes for the active years 1977 - 1983

    Get PDF
    Ratios of solar to trapped proton fluences were computed for circular-orbit, geocentric space missions to be flown during the active phase of the next solar cycle (1977-1983). The ratios are presented as functions of orbit altitude and inclination, mission duration, proton energy threshold, and the chance the mission planner is willing to take that the actually encountered solar proton fluence will exceed the design fluence provided by the statistical solar proton model. It is shown that the ratio is most sensitively dependent on orbit altitude and inclination, with trapped protons dominant for low inclination, low and mid altitude orbits and for high inclination, mid altitude orbits. Conversely, solar protons are dominant for high inclination, low altitude orbits, and for low and high inclination, high altitude orbits

    TOPEX orbital radiation study

    Get PDF
    The space radiation environment of the TOPEX spacecraft is investigated. A single trajectory was considered. The external (surface incident) charged particle radiation, predicted for the satellite, is determined by orbital flux integration for the specified trajectory. The latest standard models of the environment are used in the calculations. The evaluation is performed for solar maximum conditions. The spacecraft exposure to cosmic rays of galactic origin is evaluated over its flight path through the magnetosphere in terms of geomagnetic shielding effects, both for surface incident heavy ions and for particles emerging behind different material thickness. Limited shielding and dose evaluations are performed for simple infinite slab and spherical geometries. Results, given in graphical and tabular form, are analyzed, explained, and discussed. Conclusions are presented and commented on

    Orbital flux integrations: Parameter values for effective computer time reductions

    Get PDF
    To improve computer utilization and to reduce the cost of orbital flux integrations, the effects of integration parameters 'duration' (T) and 'stepsize' (delta t) on integration results were investigated. Over given ranges of T and delta t, and within specified acceptable accuracy restraints, optimal values of these parameters were established for circular subsynchronous trajectories, in terms of the variables altitude (H) and inclination (i). It is shown that (1) above a certain statistically important value, duration is independent of both h and i; (2) stepsize has a relative altitude dependence; and (3) stepsize is not a function of inclination. The substantial savings in computer time are discussed along with the possibility of greater savings by relaxing accuracy restrictions while not exceeding the minimum model-associated uncertainty factors of the environments

    The radiation environment of OSO missions from 1974 to 1978

    Get PDF
    Trapped particle radiation levels on several OSO missions were calculated for nominal trajectories using improved computational methods and new electron environment models. Temporal variations of the electron fluxes were considered and partially accounted for. Magnetic field calculations were performed with a current field model and extrapolated to a later epoch with linear time terms. Orbital flux integration results, which are presented in graphical and tabular form, are analyzed, explained, and discussed
    corecore